129 research outputs found

    Superwind-driven Intense H2_2 Emission in NGC 6240 II: Detailed Comparison of Kinematical and Morphological Structures of the Warm and Cold Molecular Gas

    Full text link
    We report on our new analysis of the spatial and kinematical distribution of warm and cold molecular gas in NGC 6240, which was undertaken to explore the origin of its unusually luminous H2_2 emission. By comparing three-dimensional emission-line data (in space and velocity) of CO (J=2-1) in the radio and H2_2 in the near infrared, we are able to study the H2_2 emitting efficiency, defined in terms of the intensity ratio of H2_2 to CO [II(H2_2)/II(CO)], as a function of velocity. The integrated H2_2 emitting efficiency is calculated by integrating the velocity profile of H2_2 emitting efficiency in blue, red, and total (blue + red) velocity regions of the profile. We find that (1) both the total H2_2 emitting efficiency and the blue-to-red ratio of the efficiency are larger in regions surrounding the CO and H2_2 intensity peaks, and (2) the H2_2 emitting efficiency and the kinematical conditions in the warm molecular gas are closely related to each other. A collision between the molecular gas concentration and the external superwind outflow from the southern nucleus seems plausible to explain these characteristics, since it can reproduce the enhanced emitting efficiency of blueshifted H2_2 around the molecular gas concentration, if we assume that the superwind blows from the southern nucleus toward us, hitting the entire gas concentration from behind. In this model, internal cloud-cloud collisions within the molecular gas concentration are enhanced by the interaction with the superwind outflow, and efficient and intense shock-excited H2_2 emission is expected as a result of the cloud-crushing mechanism.Comment: 12 pages, 6 figures, accepted for publication in A

    What Controls the Star Formation in Luminous Starburst Mergers ?

    Full text link
    In order to understand what controls the star formation process in luminous starburst mergers (e.g., NGC 6240, Arp 220, and so on), we investigate observational properties of two samples of high-luminosity starburst galaxies mapped in CO(JJ=1--0) independently using both the Owens Valley Radio Observatory (Scoville et al. 1991) and the IRAM interferometer (Downes & Solomon 1998). We find that the surface density of far-infrared luminosity, Σ\Sigma(FIR), is proportional linearly to the H2_2 surface mass density, Σ\Sigma(H2_2), for the two samples; Σ\Sigma(FIR) Σ\propto \Sigma(H2_2)1.01±0.06^{1.01\pm0.06} with a correlation coefficient of 0.96. It is often considered that Σ\Sigma(FIR) provides a good measure of the star formation rate per unit area, Σ\Sigma(SFR). It is also known that molecular gas is dominated in circumnuclear regions in the luminous starburst mergers; i.e., Σ\Sigma(gas) Σ\simeq \Sigma(H2_2). Therefore, the above relationship suggests a star formation law; Σ\Sigma(SFR) Σ\propto \Sigma(gas). We suggest that this star formation law favors the gravitational instability scenario rather than the cloud-cloud collision one.Comment: 14 pages, 2 figures. The Astrophysical Journal (Letters), in pres
    corecore